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Abstract - A combined FD-TD/matrix-pencil
method is introduced for the efficient and rig-
orous calculation of the full-wave modal S-
parameters of waveguide components including
structures of more general shape or of high com-
plexity. The application of the S-parameter
definition for unmatched ports requires merely
standard Mur7s absorbing boundaries for reli-
able results, and a nonorthogonal or contour
path mesh formulation allows the convenient in-
clusion of curved boundaries. The efficiency
of the method is demonstrated at the analy-
sis of waveguide components of practical im-
portance, such as the twisted waveguide, the
twisted waveguide bend, and the waffle-iron fil-
ter. The proposed method is verified by excel-
lent agreement with FEM/mode-matching re-
sults.

1. INTRODUCTION

SEVERAL TECHNIQUES have been applied in the past

for analyzing waveguide structures of more generaI

shape, such as miter compensated T-junctions, ana-

lyzed by a FEM method in [1], or arbitrarily shaped

H- and E-plane discontinuities, which are investigated

by a boundary-contour mode-matching method in [2].

Due to its high flexibility, the FD-TD method is consid-

ered to be particularly well applicable for the analysis

of waveguide elements, which has been demonstrated

recently, [3] -[6].

Typical elements hitherto investigated by the FD-

TD method, however, are inductive irises or h~duc-

tive iris filters, transitions and T-junctions, H-plane

couplers, H-plane corners with inductive posts, and

cylindrical cavities [3] - [6]. It indicates that mostly

simple step type structures have been analyzed so far

which have been calculated also by the mode match-

ing technique before. This seems to be mainly due to

well-known problems in the usual FD-TD simulation

of more general waveguide elements, for instance the

large number of required time steps, and the influence

of the highly dispersive waveguide ports.

This paper presents an improved FD-TD-based ap-

proach which allows the efficient full-wave modal S-

matrix calculation of a comprehensive class of more

general or complicated waveguide structures, such as

bends, twisted bends, and waffle-iron filters (Fig.1).

The hitherto existing typical problems in the usual FD-

TD simulation of waveguide elements are solved suc-

cessfully by adequate techniques: 1) For the first time,

the very efficient matrix pencil technique [7] is utilized

for the FD-TD method. This reduces the number of in-

volved time steps significantly. The matrix pencil tech-

nique requires less numerical effort than, for inst ante,

the often used Prony’s method [8]. 2) The applica-

tion of the modal S-parameter definition for unmatched

ports [9] achieves even with standard Mur’s absorbing

boundaries excellent and reliable results also for the

higher-order modes. 3) A structure dependent mesh
is used based on nonorthogonal or contour path grid

cells, respectively, according to the specific form of the

boundary.

Fig. 1: Typical structures investigated with the

improved FD-TD technique: Twisted 90 °-waveguide,

twisted 900-bend, and waffle-iron filter.
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II. THEORY B. Modal S-parameter extraction

A. Matrix Pencil Technique

Like for Prony’s method [8], also for the matrix pencil

technique the time transient wave form is approximated

[7] by a sum of damped complex exponential

!/k = Xk +~k = ~ lb,,e(ai+~@*)’+J@*+nk

t=l

t=]
(1)

where k = 011, . . . . N – 1 is the time index, nk indi-

cates additional noise. The basic idea of the matrix

pencil method – and the significant difference in com-

parison with Prony’s method – is to formulate an eigen-

value problem [7] for the determination of the poles

zf>t=l, . . ..M.

With the data vectors xt of length N – L for the

noiseless signal x~

T
Xf = [Zt, zf+l, . . . , zjv_L+&l] (2)

the matrices Xo and Xl are defined

X() = [z&l, z&,, . . . ,Z,] (3)

(N–L)x L

xl = [~L,~&,,...,~I]. (4)

(N–L)x L

If the ‘pencil-parameter’ L is chosen to be M < L <

N – M, the matrix pencil Xl – ztXO is of rank M – 1,

and each pole zt is one of the A4 nonzero eigenvalues

of the generalized eigenvalue problem

(x, - 2X())q = o. (5)

Eq. (5) is transformed into a standard eigenvalue

problem by multiplication from left with the pseudo

inverse [10] .Yo+. For the noisy signal, the data ma-

trices lb, YI, defined analogously to XO, Xl, might

have the full rank, even if the signal contains only

M < min(N – L, L) poles. Therefore, the transfor-

mation of (5) into a standard eigenvalue problem of

a matrix of rank M is performed by the multiplica-

tion with the ‘truncated pseudo inverse matrix’ l;+

[10]. To obtain an estimation of the number of poles
M of the noisy signal, and to compute Yo+, a singular

value decomposition [11] of Y. = UXVH is carried out.

After computing the poles zt, i.e. the eigenvalues of

(Yo+l’~ – zI)q = O, the residues b, are obtained easily

by solving a least square problem.

The proposed technique is based on the general

modal S-parameter definition in the case of unmatched

ports, i.e. the structure is simulated with non-ideal

absorbing boundaries. This implies that on each port

both incident and scattered propagating waves (and/or

evanescent modes) appear, even if only one port has

been excited. In the case of a general N-port disconti-

nuity, we have to consider a system of N equations in

the form:

B = SA, (6)

where B = (bl, b2, . . . . bN) is a matrix formed by N

different b-vectors, and A = (al, az, . . . . a~ ) is a ma-

trix formed by N different a-vectors. The desired modal

S-matrix is then obtained by the multiplication of equa-

tion (6) with the inverse of matrix A, from the right

side.

The N different vectors a and b, respectively, are

calculated by N appropriate simulation runs, each con-

sidering a different condition, e.g. the excitation of a

different port. If more then one mode are present on a

port of the structure under investigation, an extraction

of the modal guided power has to be performed. For

that purpose, we use the orthogonal mode properties.
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Fig. 2: a) Return loss of a 90° twisted rectangular

X-band waveguide. FD-TD-Matrix-Pencil-method,

1280 At ( ——— ), comparison with FD-TD-FFT,
for 16384 At ( --- ) and FEM/MM results [12] ( -

-“)
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III. RESULTS

For the application of the matrix pencil technique

to the examples in this chapter, the number of sig-

nal poles for the calculation of the pseudo inverse ma-
trix Yo+ is determined by the chosen minimum value of

a~ z o]. 10–6. In all investigated cases, the whole time

interval for the FD-TD simulation is chosen to be four

times the value which an exited wave needs to cross the

structure under investigation. Since the FD-TD time

signals are very oversampled, only every (N ~ki~ + l)th

value is considered for the matrix pencil formulation.

The number of skipped time steps N ~ki~ has to be se-

lected so that the estimated number of poles M is less

than the half of the totally involved time steps N &Ip.

The first example is a twisted rectangular X-band

waveguide, Fig. 2a and 2b. Very good agreement

with own finite element/mode-matching (FE/MM) cal-

culations [12] is shown by using the described modal

unmatched-port S-parameter technique, Fig. 2a. In

contrast to the application of a 16384-FFT, merely the

first 1280 time iterations are required by using the ma-

trix pencil technique, and N ~ki~zl was used. Fig. 2b

shows a comparison of the matrix-pencil results with

DFT-results, obtained with only 1280 time steps.
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Fig. 2: b) Return loss of a 90° twisted rectan-
gular X-band waveguide. Comparison with FD-TD-
DFT results ( O 0 ) for 1280 At and the standard
matched-load S-parameter extraction procedure ( – . –

) . Dimensions: WR90 waveguide, 22.86 x 10.16mm,

length of the twisted region: 31 .75mm. Applied dis-

cretization: 38 x 17 x 104 cells.
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Fig. 3: Return loss of a 90° twisted 900-bend,

obtained by the FD-TD-Matrix-Pencil-method, 4500

At ( ——— ), compared with FD-TD-FFT results for

16384 At ( --- ), FD-TD-DFT results for 4500 At

( O 0 ), and FD-TD-FFT results ( - ~- ~ ) utilizing

the matched-load S-parameter extraction procedure.

Dimensions: WR90 waveguide, .4=22 .86 x 10. 16mm,

bend-radius: 2.4. Discretization: 34 x 16 x 202 cells.
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Fig. 4: WafRe-iron filter of MATTHAEI, YOUNG,

JONES. Verification of the FD-TD-Matrix-Pencil re-

sults ( ——— ), ( – . – . ) with the FE/MM method

[12] (---),().
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The next example is a waffle-iron filter with the

dimensions given in [13]. Good agreement with the

FE/MM [12] results may be stated again, cf. Fig. 4.

IV. CONCLUSION

A very efficient FD-TD technique is introduced for

the analysls of waveguide structures of nearly arbi-

trary shape and of high complexity. The involved ma-

trix pencil technique requires less numerical effort than

the often used Prony’s method. The direct use of the

modal S-parameter definition for unmatched ports, and

a structure dependent mesh based on nonorthogonal

or contour path grid cells, achieve even with standard

Mur’s absorbing boundaries excellent and reliable re-

sults also for higher-order modes.
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