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Abstract - A combined FD-TD /matrix-pencil
method is introduced for the efficient and rig-
orous calculation of the full-wave modal S-
parameters of waveguide components including
structures of more general shape or of high com-
plexity. The application of the S-parameter
definition for unmatched ports requires merely
standard Mur’s absorbing boundaries for reli-
able results, and a nonorthogonal or contour
path mesh formulation allows the convenient in-
clusion of curved boundaries. The efficiency
of the method is demonstrated at the analy-
sis of waveguide components of practical im-
portance, such as the twisted waveguide, the
twisted waveguide bend, and the waflle-iron fil-
ter. The proposed method is verified by excel-
lent agreement with FEM/mode-matching re-
sults.

I. INTRODUCTION

EVERAL TECHNIQUES have been applied in the past

for analyzing waveguide structures of more general
shape, such as miter compensated T-junctions, ana-
lyzed by a FEM method in [1], or arbitrarily shaped
H- and E-plane discontinuities, which are investigated
by a boundary-contour mode-matching method in [2].
Due to its high flexibility, the FD-TD method is consid-
ered to be particularly well applicable for the analysis
of waveguide elements, which has been demonstrated
recently, [3] -[6].

Typical elements hitherto investigated by the FD-
TD method, however, are inductive irises or induc-
tive iris filters, transitions and T-junctions, H-plane
couplers, H-plane corners with inductive posts, and
cylindrical cavities [3] - [6]. It indicates that mostly
simple step type structures have been analyzed so far
which have been calculated also by the mode match-
ing technique before. This seems to be mainly due to
well-known problems in the usual FD-TD simulation
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of more general waveguide elements, for instance the
large number of required time steps, and the influence
of the highly dispersive waveguide ports.

This paper presents an improved FD-TD-based ap-
proach which allows the efficient full-wave modal S-
matrix calculation of a comprehensive class of more
general or complicated waveguide structures, such as
bends, twisted bends, and waffle-iron filters (Fig.1).
The hitherto existing typical problems in the usual FD-
TD simulation of waveguide elements are solved suc-
cessfully by adequate techniques: 1) For the first time,
the very efficient matrix pencil technique (7] is utilized
for the FD-TD method. This reduces the number of in-
volved time steps significantly. The matrix pencil tech-
nique requires less numerical effort than, for instance,
the often used Prony’s method [8]. 2) The applica-
tion of the modal S-parameter definition for unmatched
ports [9] achieves even with standard Mur’s absorbing
boundaries excellent and reliable results also for the
higher-order modes. 3} A structure dependent mesh
is used based on nonorthogonal or contour path grid
cells, respectively, according to the specific form of the
boundary.

Fig. 1: Typical structures investigated with the
improved FD-TD technique: Twisted 90°-waveguide,
twisted 90°-bend, and waffle-iron filter.
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II. THEORY
A. Matrix Pencil Technique

Like for Prony’s method [8], also for the matrix pencil
technique the time transient wave form is approximated
[7] by a sum of damped complex exponentials
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where & = 0,1,...,N — 1 is the time index, n; indi-
cates additional noise. The basic idea of the matrix
pencil method — and the significant difference in com-
parison with Prony’s method — is to formulate an eigen-
value problem (7] for the determination of the poles
Zt, t= 1,,]\/_[

With the data vectors x; of length N — L for the
noiseless signal z;,

Tt = [Tty Doty EN- L1 (2)
the matrices Xy and X; are defined
Xo = |zp_1,xr-2...., 0] (3)
(N—L)xL
)(1 = [CUL,CUL,_l,...,:EI]. (4)
(N—L)xL

If the ‘pencil-parameter’ L is chosen to be M < L <
N — M, the matrix pencil X; — z; Xy is of rank M — 1,
and each pole z; is one of the M nonzero eigenvalues
of the generalized eigenvalue problem

(X1 —2X0)g = 0. (5)

Eq. (5) is transformed into a standard eigenvalue
problem by multiplication from left with the pseudo
inverse [10] Xg. For the noisy signal, the data ma-
trices Yy, Y1, defined analogously to Xy, Xq, might
have the full rank, even if the signal contains only
M < min(N — L,L) poles. Therefore, the transfor-
mation of (5) into a standard eigenvalue problem of
a matrix of rank M is performed by the multiplica-
tion with the ‘truncated pseudo inverse matrix’ Y
[10]. To obtain an estimation of the number of poles
M of the noisy signal, and to compute Y;", a singular
value decomposition [11] of Yy = USV# is carried out.
After computing the poles z, i.e. the eigenvalues of
(Y;tY: — 2I)g = 0, the residues b; are obtained easily
by solving a least square problem.
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B. Modal S-parameter extraction

The proposed technique is based on the general
modal S-parameter definition in the case of unmatched
ports, i.e. the structure is simulated with non-ideal
absorbing boundaries. This implies that on each port
both incident and scattered propagating waves (and/or
evanescent modes) appear, even if only one port has
been excited. In the case of a general N-port disconti-
nuity, we have to consider a system of N equations in
the form:

B = SA, (6)

where B = (by,bs,...,by) is a matrix formed by N
different b-vectors, and A = (a;,as,...,ay) is a ma-
trix formed by N different a-vectors. The desired modal
S-matrix is then obtained by the multiplication of equa-
tion (6) with the inverse of matrix A, from the right
side.

The N different vectors a and b, respectively, are
calculated by N appropriate simulation runs, each con-
sidering a different condition, e.g. the excitation of a
different port. If more then one mode are present on a
port of the structure under investigation, an extraction
of the modal guided power has to be performed. For
that purpose, we use the orthogonal mode properties.
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Fig. 2: a) Return loss of a 90° twisted rectangular
X-band waveguide. FD-TD-Matrix-Pencil-method,

1280 At { —— ), comparison with FD-TD-FFT,
for 16384 At ( ~ -~ ~ ) and FEM /MM results [12] ( - -
— ).



I1I. REsuLTS

For the application of the matrix pencil technique
to the examples in this chapter, the number of sig-
nal poles for the calculation of the pseudo inverse ma-
trix Y5 is determined by the chosen minimum value of
oum > 01-107%. In all investigated cases, the whole time
interval for the FD-TD simulation is chosen to be four
times the value which an exited wave needs to cross the
structure under investigation. Since the FD-TD time
signals are very oversampled, only every (NV gkip + 1)th
value is considered for the matrix pencil formulation.
The number of skipped time steps N g, has to be se-
lected so that the estimated number of poles M is less
than the half of the totally involved time steps N yip.

The first example is a twisted rectangular X-band
waveguide, Fig. 2a and 2b. Very good agreement
with own finite element /mode-matching (FE/MM) cal-
culations [12] is shown by using the described modal
unmatched-port S-parameter technique, Fig. 2a. In
contrast to the application of a 16384-FFT, merely the
first 1280 time iterations are required by using the ma-
trix pencil technique, and N g;p,=1 was used. Fig. 2b
shows a comparison of the matrix-pencil results with
DFT-results, obtained with only 1280 time steps.
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Fig. 2: b) Return loss of a 90° twisted rectan-
gular X-band waveguide. Comparison with FD-TD-
DFT results ( © < ) for 1280 At and the standard
matched-load S-parameter extraction procedure ( - - -
-) . Dimensions: WR90 waveguide, 22.86 x 10.16mm,
length of the twisted region: 31.75mm. Applied dis-
cretization: 38 x 17 x 104 cells.
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Fig. 3: Return loss of a 90° twisted 90°-bend,
obtained by the FD-TD-Matrix-Pencil-method, 4500
At ( ——— ), compared with FD-TD-FFT results for
16384 At ( — - - ), FD-TD-DFT results for 4500 At
(<& <), and FD-TD-FFT results ( ~ - — - ) utilizing
the matched-load S-parameter extraction procedure.
Dimensions: WR90 waveguide, 4=22.86 x 10.16mm,
bend-radius: 2A4. Discretization: 34 x 16 x 202 cells.
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Fig. 4: Waflle-iron filter of MATTHAEL, YOUNG,
JONEs. Verification of the FD-TD-Matrix-Pencil re-
sults (——— ), { = - — - ) with the FE/MM method
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The next example is a waffle-iron filter with the
dimensions given in [13]. Good agreement with the
FE/MM [12] results may be stated again, cf. Fig. 4.

IV. CONCLUSION

A very efficient FD-TD technique is introduced for
the analysis of waveguide structures of nearly arbi-
trary shape and of high complexity. The involved ma-
trix pencil technique requires less numerical effort than
the often used Prony’s method. The direct use of the
modal S-parameter definition for unmatched ports, and
a structure dependent mesh based on nonorthogonal
or contour path grid cells, achieve even with standard
Mur’s absorbing boundaries excellent and reliable re-
sults also for higher-order modes.
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